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The design and optimization of energy harvesters capable of scavenging energy

efficiently from realistic environments require a deep understanding of their transduc-

tion under non-stationary and random excitations. Otherwise, their small energy

outputs can be further decreased lowering their efficiency and rendering many critical

understanding, this effort investigates the response of energy harvesters to harmonic

excitations of time-varying frequency. Such excitations can be used to represent the

behavior of realistic vibratory environments whose frequency varies or drifts with time.

Specifically, we consider a piezoelectric stack-type harvester subjected to a harmonic

excitation of constant amplitude and a sinusoidally varying frequency. We analyze the

response of the harvester in the fixed-frequency scenario then use the Jacobi–Anger’s

expansion to analyze the response in the time-varying case. We obtain analytical

expressions for the harvester’s response, output voltage, and power. In-depth analysis of

the attained results reveals that the solution to the more complex time-varying

frequency can be understood through a process which ‘‘samples’’ the fixed-frequency

response curve at a discrete and fixed frequency interval then multiplies the response

by proper weights. Extensive discussions addressing the effect of the excitation

parameters on the output power is presented leading to some initial suggestions

pertinent to the harvester’s design and optimization in the sinusoidally varying

frequency case.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Energy harvesting is a process by which otherwise wasted ambient energy can be captured and transformed into a
useful form. Historical examples of this concept include windmills, sailing ships, and waterwheels. Modern technologies
and current energy needs have brought this same concept to a smaller scale wherein small devices with minute energy
consumption can be operated autonomously. This can be achieved by exploiting the ability of some active materials and
mechanisms to generate an electric potential in response to mechanical motions or external vibrations [1–3].

Many critical electronic devices, such as health-monitoring sensors [4,5], pace makers [6], spinal stimulators [7],
wireless sensors [8–10], etc. require minimal amounts of power to function. Such devices have, for long time, relied on
batteries that have not kept pace with the devices’ demands, especially in terms of energy density [11]. In light of such
challenge, scavenging otherwise wasted energy from mechanical vibrations can provide a solution to lower our
dependance on batteries and advance many life-saving technologies.

While most environmental excitations under which energy harvesters are designed to operate do not possess well-
defined characteristics and are generally random or have a non-stationary nature in which the frequency or amplitude of
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the excitation vary with time; current research studies have, for the most part, addressed the problem from a steady-state
perspective which assumes a harmonic fixed-frequency excitation [12–17]. Two reasons for this assumption lie in the
complexities that could arise when one attempts to obtain insightful analytical solutions when the excitation is non-
stationary and that most experimental setups are carried in a laboratory environment where the excitation sources can be
controlled, and, hence, non-stationarity problems can be avoided.

As of today, it is still not well-understood whether the steady-state fixed-frequency analysis is a good indicator of the
harvester’s performance in realistic environments or whether one can solely depend on these studies for the design and
optimization of energy harvesters. As a first step towards developing this critical understanding, this manuscript delves
into the understanding of energy harvester’s transduction under a class of harmonic excitations having a time-varying
frequency. Such excitations are common especially in rotary machines that vibrate, even in healthy conditions, due to
radial magnetic reluctance forces, minute rotational imbalances, and electrical interferences. For instance, turbines, jet
engines, generators, and induction motors are usually equipped with a network of sensors to monitor their health
condition so as to avoid catastrophic failures and severe economic losses resulting from lengthy shutdowns. These sensors,
which usually require minute amount of power to function, are powered through a wiring system that costs more than the
sensor itself [18]. In addition to space limitations, the sensor-cable assembly can also cause reliability problems. Such
issues can be avoided if these sensors are powered autonomously via energy harvesters that feed on the machines’
vibrations. These vibrations are usually harmonic with a frequency that drifts with time and with the machine’s rotational
speed especially that most rotary machines are currently being equipped with variable-speed drives to ensure maximum
efficiency at variable loadings.

In this manuscript, we emphasize frequency profiles having a sinusoidal variation for two reasons. First, such profiles
cover both directions of the frequency sweep which permits understanding the effect of the sweep direction on the output
power. Second, using a Fourier Series Expansion, other frequency profiles can be transformed into a series of sinusoids
which allows us to address more general frequencies by building upon the understanding of the sinusoidally varying
frequency case.

The rest of the manuscript is organized as follows: In Section 2, we present the mathematical model of the piezoelectric
stack-type harvester under consideration and carry dimensional analysis to identify the important design parameters. In
Section 3, we present the response of the harvester to harmonic excitations of a fixed frequency and obtain an approximate
analytical solution describing the response of the harvester to sinusoidally varying frequency excitations. We study the
convergence of this solution to a numerical integration of the actual equations of motion then use it to obtain an analytical
expression for the average power. The availability of these analytical solutions allows us, in Section 4, to perform a
parameter study, to understand the influence of the sweep rates and different design parameters on the energy harvesting
process. In Section 5, we present some results pertinent to the optimality of the load resistance in the sinusoidally varying
frequency case. In Section 6, we make some suggestions with regards to tuning the harvester. Finally, in Section 7, we
present our conclusions and recommendation for future work.
2. Mathematical model

We consider a harvester consisting of a piezoelectric (PZT) stack and a proof mass as shown in Fig. 1. The base is
subjected to an input excitation, F(t), and the PZT stack is wired to a purely resistive electric load, Req, through two
electrodes. The harvester’s governing equations of motion can be expressed as [12]

€xþ2zon _xþo2
nx�

y
m

V ¼
F0

m
cosðotÞ; (1a)
Fig. 1. A schematic of a PZT-stack type energy harvester.
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y _xþCp
_V þ

1

Req
V ¼ 0; (1b)

on ¼

ffiffiffiffiffi
K

m

r
; m¼Mþ

1

3
Mp; K ¼

EpAp

tp
; y¼�

eAp

tp
; Cp ¼

eAp

tp
;

where z is the mechanical damping ratio, on is the natural frequency of the mechanical system, K is the effective stiffness
of the PZT stack, Ap and tp are the cross-sectional area and thickness of the PZT, respectively, and Ep is its Young’s modulus;
m denotes the effective mass of the system which consists of a proof mass, M, and the mass of the piezoelectric stack, Mp.
The resistance Req ¼ RLRp=RLþRp is the equivalent of the load resistance, RL, and the piezoelectric resistance, Rp,1 y is the
effective piezoelectric coupling coefficient, and Cp is the effective capacitance of the piezoelectric stack. The constants e and
e represent, respectively, the piezoelectric constant and electric permittivity of the PZT.

Here, we adopt a linear single-degree-of-freedom (SDOF) model to represent the response because most of the energy
harvesting devices considered in the literature have been shown to behave linearly within the operation range of the
harvester. The most prolific energy harvesting device, which consists of a piezoelectric cantilevered-type bi-morph, has
been extensively modeled in the literature using linear assumptions. Indeed, it has been shown experimentally, see for
instance [3,12,13,19,20], that a linear model is sufficient to predict the dynamic behavior of the harvester. With regards to
the SDOF assumption, Osorio and Daqaq [21] has shown that, in the case of piezoelectric harvesters, a reduced-order model
consisting of a single mode is accurate enough to predict the dynamic behavior provided that the harvester is being excited
near that mode.

We consider a harmonic excitation with a fixed amplitude and a sinusoidally varying frequency in the form

FðtÞ ¼ F0cos½ootþbsinðotÞ�; (2)

where oo denotes the carrier frequency, o represents the modulation frequency, and b is the modulation index. When
either the modulation index or frequency are set to zero, the instantaneous frequency reduces to oo and the excitation F(t)
becomes stationary. In simple terms, Eq. (2) represents a forcing function having a frequency which varies sinusoidally
around a center value of oo with a frequency o. Since the argument of the cosine in Eq. (2) is the time integral of the
frequency, one can also define the instantaneous frequency according to

OinstðtÞ ¼ooþbocosðotÞ: (3)

2.1. Dimensional analysis

To simplify the system and better understand how different parameters influence the system’s response, we perform a
dimensional analysis where we introduce the following dimensionless variables:

t¼
t
on

; x¼ Xx; V ¼ VocV ; oo ¼Ooon; o¼Oon; (4)

where X ¼ F0=K represents the maximum displacement and Voc ¼ yX=Cp is the open-circuit voltage. Upon substitution of
Eq. (4) into Eqs. (1a) and (1b), we obtain

€xþ2z _xþx�YV ¼ cos½OotþbsinðOtÞ�; (5a)

_xþ _V þGV ¼ 0; (5b)

where the derivatives are now with respect to the dimensionless time, t, and the dimensionless parameters are given by

Y¼
y2

KCp
; G¼

1

ReqCpon
: (6)

Here, Y represents the effective coupling between the mechanical and electrical subsystems and G is the ratio of the
mechanical time constant, 1=on, and the electrical time constant, ReqCp.

3. Steady-state response

In the case of a fixed-frequency excitation, the steady-state response can be easily obtained as

xðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

p
sin Ootþarctan

A

B

� �� �
; (7)
1 The piezoelectric resistance is usually orders of magnitude larger than the load resistance, hence the equivalent resistance can be approximated

by RL.
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V ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2þD2

p
sin Ootþarctan

C

D

� �� �
; (8)

where

AðOoÞ ¼
ð1�O2

oÞðO
2
oþG

2
ÞþO2

oY
E

; (9)

BðOoÞ ¼
Oo½2zðG2

þO2
oÞþGY�

E
; (10)

CðOoÞ ¼
�O2

o ½2zGþð1�O
2
oÞþY�

E
; (11)

DðOoÞ ¼
Oo½Gð1�O2

o Þ�2zO2
o �

E
; (12)

and

EðOoÞ ¼ ½ð1�O2
o Þ

2
þ4z2O2

o �ðO
2
oþG

2
ÞþYO2

oðYþ4zGþ2�2O2
o Þ: (13)

After some algebraic manipulations, the amplitude of the voltage developed across the PZT stack can be simplified to

V pðOoÞ ¼
Ooffiffiffiffiffiffiffiffiffiffiffiffi
EðOoÞ

p : (14)

Using Eq. (14), the amplitude of output power can be expressed as

PpðOoÞ ¼
V

2

pðOoÞV2
oc

Req
: (15)

Fig. 2 depicts the power-response curve in the fixed-frequency case for the numerical values listed in Table 1. In the figure,
we normalize the excitation frequency with respect to the non-dimensional resonance frequency of the harvester, Or . The
resonance frequency is obtained by solving the eigenvalue problem associated with Eqs. (5a) and (5b) for the parameters
listed in Table 1 which yields a resonance frequency of Or ¼ 1:1143. As shown in Fig. 2, we also introduce a measure for the
bandwidth of the harvester, Obw. In this paper, we define Obw as the distance between the resonance frequency and the
frequency at which the output power drops below 4 percent of its peak value. For the parameters listed in Table 1,
Obw ¼ 0:2.

In the sinusoidally varying case, an analytical solution of Eqs. (5a) and (5b) is not easily attainable but is critical to
provide valuable insight into the behavior of the system’s response in terms of the fixed-frequency power curve and the
excitation parameters. What we know about the response of vibratory systems to time-varying excitations dates back to
the work of Lewis in 1932 [22] whose studies were later expanded by Cronin [23]. Notably, it was shown that resonance no
longer occurs at the system’s natural frequency, but rather before or after resonance, depending on the rate and direction
of the excitation’s frequency sweep. Also, it was noted that the system has a larger bandwidth and experiences a beat-like
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Fig. 2. Frequency response curve for the fixed-frequency case given by Eq. (15).
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Table 1
Numerical values for PZT harvester.

Parameter (Symbol) Value

Proof mass (M) 0.01 kg

Piezoelectric layer mass (Mp) 0.75 g

PZT layer modulus of elasticity (Ep) 66� 109 N=m2

PZT layer cross-sectional area (Ap) 1 cm2

PZT layer thickness (tp) 1 cm

Piezoelectric constant (e) �14 C=m2

PZT layer permittivity (e) 1:137� 10�8 F=m

Mechanical damping ratio (z) 0.01

Excitation amplitude (F) 1 N

Equivalent electric load (Req) 100 kO
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response shortly after the resonant frequency [23–28]. Henson [29] studied the response of several oscillatory systems to
excitations with a harmonically varying frequency and noted that the system’s natural frequency does not even need to be
within the range of the excitation for its effects to be experienced. Such findings reveal that the transduction of energy
harvesters in time-varying frequency environments are vastly different from their steady-state performance
characteristics.

Finding an analytical solution becomes even more imperative when one realizes that numerical integration of the
equations of motion for time-varying frequencies is very time-consuming and does not always provide the necessary
insight for design and optimization especially given that variations in the excitation frequency can stiffen the problem
numerically, making the integration harder for faster sweep rates and requiring even smaller integration time steps to
adequately resolve each oscillation cycle. To resolve this issue, we use a mathematical identity that is frequently utilized in
wave physics and signal processing. The identity known as the Jacobi–Anger’s expansion [30] transforms the sine and
cosine terms in the following form:

cosðxsinjÞ ¼
X1

k ¼ �1

JkðxÞcosðkjÞ; (16a)

sinðxsinjÞ ¼
X1

k ¼ �1

JkðxÞsinðkjÞ; (16b)

where Jk(x) is the Bessel function of the first kind and order k.2 Using Eqs. (16a) and (16b), the sine and cosine arguments in
Eq. (5a) can be rewritten as

cos½OotþbsinðOtÞ� ¼
X1

k ¼ �1

JkðbÞcosðOktÞ; (17)

where Ok ¼OoþkO. Eq. (17) states that an excitation with sinusoidally varying frequency can be represented by a sum of
infinite fixed-frequency excitations of different weights. Substituting Eq. (17) into Eq. (5a) yields

€xþ2z _xþx�YV ¼
X1

k ¼ �1

JkðbÞcosðOktÞ: (18)

In solving Eqs. (5a) and (5b), we use the principle of superposition and rewrite the governing equations in the form

€x kþ2z _x kþxk�YV k ¼ cosðOktÞ; (19a)

_x kþ
_V kþGV k ¼ 0; k¼�1; . . . ;�1;0;1; . . . ;1; (19b)

where

xk ¼
F0JkðbÞ

K
xk ¼ Xkxk; Vk ¼

yXk

Cp
V k; (20)

and

x ¼
X1

k ¼ �1

xk; V ¼
X1

k ¼ �1

V k: (21)
2 See Appendix A for a brief description of Jk(x) and its relevant properties.
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Noting that Eqs. (19a) and (19b) are similar to those associated with the fixed-frequency but with excitation frequency
Ok instead of Oo, we can write the steady-state solution for each pair xkðtÞ and V kðtÞ as

xkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

kþB2
k

q
sin Oktþarctan

Ak

Bk

� �� �
; (22)

V kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

k þD2
k

q
sin Oktþarctan

Ck

Dk

� �� �
; (23)

where Ak ¼ AðOkÞ, Bk ¼ BðOkÞ, Ck ¼ CðOkÞ, and Dk ¼DðOkÞ are as defined in Eqs. (9)–(13).

3.1. Analytical expression for the average power

The solution obtained for the output voltage can be used to obtain an analytical expression for the average power which
will aid in understanding the effect of the frequency parameters on the performance of the harvester. Such understanding
will be very hard to attain by integrating the equations of motion for a large set of parameters. Since VðtÞ is now given by
an infinite sum, the average power can be obtained using

Pavg ¼
V

2

rmsV2
oc

Req
; (24)

where V rms is the root-mean-square (RMS) voltage. We expand Eq. (21) in the form

V ¼
X1

k ¼ �1

ðCkcosðOktÞþDksinðOktÞÞJkðbÞ; (25)

then apply Parseval’s formula, [31], to Eq. (25), and obtain V rms as

V
2

rms ¼
1

2

X1
k ¼ �1

ðC2
k þD2

k ÞJ
2
k ðbÞ ¼

1

2

X1
k ¼ �1

O2
k J2

k ðbÞ

Ek
; (26)

where Ek ¼ EðOkÞ and EðOkÞ is defined in Eq. (13). The average output power can also be expressed in the more insightful form:

Pavg ¼
1

2

V2
oc

Req

X1
k ¼ �1

V
2

pðOkÞJ
2
k ðbÞ ¼

1

2

X1
k ¼ �1

PpðOkÞJ
2
k ðbÞ; (27)

where V pðOkÞ is the voltage amplitude for the fixed-frequency case and PpðOkÞ is the corresponding power.
In essence, Eq. (27) states that the average output power under a sinusoidally varying frequency can be obtained by

calculating the average output power of the fixed-frequency, which is half of its magnitude, at a discrete albeit infinite set
of frequencies separated by a constant frequency interval and adding them up with the square of the Bessel functions as
weights. As depicted in Fig. 3, one can think of this as a sampling process in which the average power of the fixed-frequency
0.5 1 1.5
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Fig. 3. Illustration of the process of ‘‘sampling’’ the fixed-frequency response curve to obtain the average output power for the time-varying frequency

excitation of Eq. (2). The sampling interval in this example is O¼ 0:1Or and the harvester is tuned at the center frequency, that is, Oo ¼Or .
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response is evaluated at discrete intervals, O, to either side of the center frequency, Oo, and each value is weighed by the
Bessel function in the final sum. It is worth noting that Oo can be any frequency and not necessarily the resonance
frequency as depicted in Fig. 3.
3.2. Convergence analysis

Although mathematically valid, the infinite sum in Eqs. (25) and (27) cannot be practically computed. Therefore, it is
imperative to investigate the minimum number of terms that should be kept in the series for convergence. One realization
that could assist in determining the convergence of the series is that the term Jk(b) approaches zero rapidly when the order
k gets larger than the argument, b, [29]. Indeed, the Bessel function Jk(b) is practically zero when k is about two or three
times the argument. As such, we can neglect any terms in Eq. (27) when jkj4kmax, where we arbitrarily define kmax as
three times the first integer larger than jbj. The curves in Fig. 4 demonstrate that this convergence criterion is conservative
as convergence occurs when kmax is only slightly larger than b. This convergence criterion is followed in all simulations
presented in this manuscript.
4. Frequency parameters analysis

Although the excitation frequency parameters are determined by the host structure and therefore are not controllable,
we wish to study their effect on the output power in order to design harvesters that can harness energy efficiently from
time-varying frequency excitations. Towards that end, we define a set of three parameters that hold a physical meaning to
describe the excitation. The first parameter remains the carrier or center frequency, Oo. As discussed previously, it
represents the center frequency around which the excitation frequency varies. We introduce a second parameter, s, to
describe the range of the excitation frequency. This constitutes a measure of the excitation’s bandwidth around Oo. Using
Eq. (3) for the instantaneous frequency, we can write

s¼ bo or s ¼ bO; (28)

where s is the dimensionless version of s and they are related through s¼ons.
The third and last parameter is the sweep rate, s, which is a measure of the frequency variation rate. Differentiating Eq.

(3) with respect to time, we obtain

_OinstðtÞ ¼�ssinðotÞ; (29)

where the sweep rate, s, is given by

s¼ bo2 or s ¼ bO2: (30)

Here, s is the dimensionless version of s and they are related by s¼o2
ns. In terms of s and s, the modulation frequency and

index can be written as

o¼ s

s
and b¼

s2

s
: (31)
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4.1. Effect of frequency range on the output power

First, we study the effect of the range, s, on the output power. We fix the sweep rate at s ¼ 0:002Or and study variations
of the output power with time and the instantaneous frequency for different values of the range, namely, s ¼ 0:05Or ,
0:1Or , 0:2Or and 0:4Or . In all cases, the harvester is tuned at the carrier frequency, that is, Oo ¼Or . The results are displayed
in Figs. 5–8.

We first note that the power envelop obtained using the analytical solution is in perfect agreement with the numerical
integration which validates the Bessel’s function approach. When the range increases, meaning the excitation frequency
travels farther away from the center frequency in each direction, the valleys where the instantaneous power output is low
become more pronounced (deeper) and last for longer periods of time, Figs. 5–8. This is expected because when the range
increases, the excitation frequency spends longer periods of time away from resonance. Consequently, the resulting
average power as predict via Eq. (27) and shown as a constant line in the figures decreases.

As the range increases, the instantaneous power envelopes also vary significantly. We observe that the value of the
power at resonance and at the turning-point frequencies changes considerably when the range is increased from 0:05Or to
0:2Or . However, beyond a certain threshold, the range has very little effect on the instantaneous power other than
extending it to a wider range of frequencies. For the case considered here, s ¼ 0:2Or seems to be the threshold value
beyond which any effect of the range on the center portion of the power frequency curve is negligible. Fig. 2 reveals that
this value is representative of the bandwidth of the fixed-frequency response curve, leading to the conclusion that if the
range is large enough to cover the whole bandwidth of the harvester, then any further effects of the range on the
instantaneous power can be neglected.
4.2. Effect of sweep rate on the average power

To further understand the effect of the sweep rate, we use Eq. (27) to study variation of the average output power with
the sweep rate for a fixed range of s ¼ 0:4Or , since, as discussed previously, at this value any effect of the range selection
on the instantaneous power is minimal. The results are displayed in Figs. 9(a) and (b) for two different cases, one in which
the harvester is tuned at the center frequency and the other in which it is tuned at Oo ¼ 1:3Or .

3

Examining Figs. 9(a) and (b), we note that the average power exhibits a complex variation with the sweep rate. We
observe that the average power is initially constant. Subsequently, beyond s ¼ 0:01O2

r , the amplitude of the average power
3 Such figures are very hard to obtain numerically especially at high sweep rates because the problem becomes very stiff numerically.
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starts to vary significantly, presenting a series of maxima and minima. As the sweep rate increases further, the average
power approaches an asymptotic limit of ð1=2ÞPpðOoÞ. This limit which is represented by dashed lines in the figure
represents the average power produced by the same harvester under a fixed-frequency excitation equal to the center
frequency Oo.
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To understand this complex behavior of the power, we divide the analysis into three parts. The first deals with
estimating the average power at low sweep rates, the second deals with moderate sweep rates, and the third deals with the
analysis at high sweep rates.
4.2.1. Average power for low sweep rates

We consider four different values of the sweep rate, namely s ¼ 0:001O2
r , s ¼ 0:002O2

r , s ¼ 0:004O2
r , and s ¼ 0:008O2

r . We
further note that the second case, s ¼ 0:002O2

r , is the same one depicted in Fig. 8, and hence, will not be repeated. The
remaining results are displayed in Figs. 10–12, where both the power time history and the instantaneous power-frequency
response of the harvester are depicted.
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For the range of sweep rate considered in Figs. 10–12, which we consider as a slow sweep, it appears that the sweep rate
has two opposite and offsetting effects on the average power. When the sweep rate increases, the instantaneous peak
power decreases but the harvester’s bandwidth increases causing the average power to remain almost constant. This
opposite and offsetting effect can also be seen in the instantaneous frequency response curves shown in Figs. 8–12. As the
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sweep rate increases, we see that the two peaks in the envelope become lower, leading to smaller power averages. At the
same time, however, the bandwidth of frequencies wherein the amount of power is measurable becomes larger resulting in
an increase in the power average. It is also worth mentioning that for the higher sweep rates, the power experiences a
beat-like response shortly after the resonant frequency. This behavior is attributed to the ratio between the characteristic
sweeping time which is related to s and the natural period of oscillation. When s is large, the system does not have enough
time to build its steady-state response and the decay of the free response from the peak (governed by the natural period)
interferes with the excitation frequency producing a beat-like response following the peak amplitude. This beat-like
response may actually enhance the average power.

It is also evident that the response envelope exhibits two peaks: one occurs when Oinst is increasing which leads to a
peak after resonance and the other occurs when Oinst is decreasing which leads to the peak before resonance. The system
inertia separates the two peaks in the power envelope as the sweep rate increases. Because of its inertia, the harvester does
not respond instantly to the excitation. During this time, the excitation frequency continues to change. The faster the
sweep rate is, the farther away from resonance the instantaneous peak frequency will be.
4.2.2. Average power for moderate sweep rates

To understand the behavior of the average power for average sweep rates, the following two points need to be
explained:
1.
 The average power in Fig. 9(b) varies about a higher mean, roughly Pavg ¼ 0:24 mW when compared to that in Fig. 9(a),
roughly 0.19 mW. This implies that, for average sweep rates, the harvester operates more efficiently when the carrier
frequency Oo is not tuned at the resonance frequency.
2.
 The average power varies significantly with the sweep rate exhibiting a series of minima and maxima. This indicates
that, the sweep rate has a considerable effect on the average power especially when the harvester is not tuned at the
resonance frequency.
To explain the first of the preceding points, we refer to Figs. 13(a) and (b) where examples of the sampling process for
each of the cases depicted in Fig. 9 are illustrated. When Oo ¼ 1:3Or , as shown in Fig. 13(b), the harvester’s resonance
frequency is very close to the end of the range of the excitation frequency. Near the end of the range, the rate of change of
the instantaneous frequency, given by Eq. (29), is much lower because the excitation is near the turning point. As a result,
the excitation frequency spends a longer period of time near the peak frequency when compared to the case at which
Oo ¼Or . This has the effect of increasing the output power considerably.
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To explain the second point, we expand Eq. (27) in terms of the amplitude of the output power in the fixed frequency
case to obtain

Pavg ¼
1
2½� � � þPpðO�1ÞJ

2
�1ðbÞþPpðOoÞJ

2
0ðbÞþPpðO1ÞJ

2
1ðbÞþ � � ��: (32)

This equation clearly indicates that the average power for the varying frequency case is obtained by ‘‘sampling’’ the
fixed-frequency response curve, Fig. 2, at a constant frequency interval given by the Ok’ s. To guarantee convergence,
the preceding expression has to be truncated at k¼ b as discussed in Section 3.2. By inspecting Eq. (32), we note the
following:
�
 For low sweep rates, the frequency interval of the sampling process, O, is very small. As such, a large number of Ok fall
within the harvester bandwidth and more terms should be kept to guarantee the convergence of the series in Eq. (32).

�
 The Bessel functions have a large argument and in that case, also see Appendix A, the need for keeping more terms for

the convergence of the series in Eq. (32) is reinforced.

�
 The only frequency which is always part of the sampling process is the center frequency Oo. Therefore, tuning the

harvester resonance frequency to Oo as in the case of Figs. 9(a) and 13(a) is the only way to guarantee that the
resonance peak is part of the sampling process independent of the sampling interval. If the center frequency of the
excitation is not tuned at the resonance frequency of the harvester, the resonance peak may not be a part of the
sampling process which can considerably lower the average output power.

When the harvester is not tuned at the center frequency, as shown in Fig. 9(b), variation in the average power can be
understood as a result of the sampling processes which is affected by the sweep rate. Specifically, when the sweep rate
yields a sampling process that includes the resonance frequency, the average power exhibits a maximum. On the other
hand, when the resonance frequency is not included in the process and all the sampling Ok’ s are far from Or , the average
power exhibits a minimum. To reinforce this finding, two excitation frequencies with the same center frequency are
considered as shown in Fig. 14. The first of which has a sweep rate of s ¼ 0:06O2

r and corresponds to a peak in the average
power curve seen in Fig. 9(b). In this case, the resonance frequency Or coincides with O�2 and the resonance is included in
the sampling process. In the second case, as shown in Fig. 14(b), the sweep rate s ¼ 0:08O2

r yields a sampling process where
the resonance frequency falls exactly halfway between the nearest sampled frequencies. This yields a minimum in the
average power curve shown in Fig. 9(b).

For further confirmation of these conclusions, the values of s at which some of the maxima and minima seen in Fig. 9(b)
occur are tabulated in Table 2, together with the equivalent sampling frequency interval and some of the sampling
frequencies around Or . In accordance with the previous discussion, the maxima occur when Or is part of the sampling
process (Or �O�1 for the first peak listed in Table 2 and Or �O�2 for the second) and the minima occur when Or is the
average of the two closest Ok’ s (for the first minimum listed in Table 2, Or � ðO�1þO�2Þ=2 and, for the second minimum,
Or � ðO�2þO�3Þ2).
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Table 2
Frequency parameters and resulting sampling frequencies at some of the maxima and minima seen in Fig. 9(b).

Minima Maxima

s

O2
r

O
Or

ðO�3 ;O�2 ;O�1Þ

Or

s

O2
r

O
Or

ðO�2 ;O�1;OoÞ

Or

0.080 0.2 (0.7,0.9,1.1) 0.119 0.2975 (0.705,1.0025,1.3)

0.048 0.12 (0.94,1.06,1.18) 0.06 0.15 (1.0,1.15,1.3)
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In conclusion, when the harvester’s resonance frequency is not tuned at the center frequency of the excitation, we can
infer the following:
1.
 A maximum in Pavg occurs when the values of Oo, s and s yield a sampling process in which resonance is included, that
is, when Or ¼Ok for any k.
2.
 A minimum in Pavg occurs when the values of Oo, s and s yield a sampling process in which resonance is as far from the
nearest Ok as possible. Since the sampling interval is constant, this happens whenever resonance is equidistant from the
two nearest Ok’ s at either side. That is, whenever Or is the average between the two nearest Ok’ s.

When the harvester is tuned at Oo as shown in Figs. 9(a) and 13(a), resonance is always a part of the sampling process,
independent of the values of s and s. As such, the previous explanation of the oscillations at low sweep rates is not sufficient.
Referring to Eq. (32), we note that although the power at resonance is now always included in the series, its associated
weighting, J0

2(b), varies with the argument of the Bessel function. Hence, the power at resonance may be very small if the
associated weight J0

2(b) is small. Conversely, the larger J0
2(b) is, the larger is the influence of resonance on the resulting average

power. By virtue of this understanding, one can expect the peaks seen in Fig. 9(a) to correspond to maxima in J0
2(b), and

the valleys to correspond to minima in J0
2(b). Inspecting Fig. 15(a), we can see that indeed the peaks in Pavg and J0

2(b) occur at
the same time (The reader has to bear in mind that the approximate curve shown in Fig. 15(a) is proportional to J0

2(b)).
Values of s that yield some of the maxima and minima seen in Fig. 9(a) are tabulated together with the corresponding

values of the modulation index, b, and the nearest zero or critical points of J0(x). Upon inspection of the results available in
Table 3, the correlation between the values of b and the zeros of J0(b) for the minima, and between b and the critical points
of J0(b) for the maxima, becomes evident.

It is worth noting that variations in the average power shown in Fig. 9(a) are more pronounced for larger values of the sweep
rate. Recalling that higher values of s lead to both lower values of b and higher values of O, this behavior can be explained by
1.
 The minima occur when J0(b)=0, in which case the resonance value does not appear in the expansion of Eq. (24).
Therefore, the terms with the highest power left in the series are PpðO1Þ and PpðO�1Þ. The larger the sampling frequency
is, the farther away from resonance these terms will be, making the minima even smaller.
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Table 3
Minima and maxima seen in Fig. 9(a) and zeros and critical points of Jo(x).

Minima Maxima

s ½�O2
r �

b JoðxÞ ¼ 0 s ½�O2
r �

b Jo
0 ðxÞ ¼ 0

0.067 2.3881 2.4048 0.042 3.8095 3.8317

0.029 5.5172 5.5201 0.023 6.9565 7.0156

T. Seuaciuc-Osório, M.F. Daqaq / Journal of Sound and Vibration 329 (2010) 2497–2515 2511
2.
 The maxima occur when J0(b) is a maximum or minimum. As can be seen in Fig. 18 in Appendix A, when b increases, the
magnitude of J0(b) at its infinitely critical points associated with J0

0 ðbÞ ¼ 0 decreases. As such, J0
2(b) is larger for lower

values of b. This implies that the weight of resonance in Pavg is larger when b is smaller.

4.2.3. Average power for high sweep rates

Since for small arguments, all Bessel functions of the first kind are very small compared to J0(x), see Fig. 18, and given
that as s increases, b decreases; we can neglect all the terms in the expansion of Eq. (32), except for the one associated with
J0(x). This yields

Pavg ¼
1

2
� � � þPpðO�1ÞJ

2
�1ðbÞ|fflffl{zfflffl}
� 0

þPpðOoÞJ
2
0ðbÞþPpðO1Þ J

2
1ðbÞ|ffl{zffl}
� 0

þ � � �

2
6664

3
7775� 1

2
PpðOoÞJ

2
0ðbÞ; (33)

which is an approximation only valid for very high sweep rates. Figs. 15(a) and (b) compare the full expression for Pavg in
Eq. (32) and the single-term approximation presented in Eq. (33) demonstrating the excellent agreement between the
curves for high sweep rates.

Now, since b approaches zero as s approaches infinity, and J0(b) approaches one as b approaches zero, we can write

Pavg-
1

2
PpðOoÞ as s-1: (34)

In other words, as the sweep rate increases while the range is kept constant, the harvester behaves as if it was under a
fixed-frequency excitation equal to the center frequency Oo. For the particular case shown in Fig. 9(a), we have Oo ¼Or .
Hence, the asymptotic value of Pavg is ð1=2ÞPpðOrÞ, which is the average power harvested at the resonance frequency. Since
Oo ¼ 1:3Or for the case illustrated in Fig. 9(b), the asymptotic average power approaches ð1=2ÞPpð1:3OrÞ. When compared
to the first case, this is a small value because Oo ¼ 1:3Or is outside the bandwidth of the fixed-frequency harvester as
shown in Fig. 2. Physically, this implies that when the frequency variation happens at a very fast time scale, the harvester
does not have enough time to responed to it and behaves as if it is being excited at the center frequency.

From the preceding discussion, we conclude that when the excitation has a very high sweep rate, the harvester should
be tuned such that the carrier frequency Oo is equal to the resonance frequency Or .
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5. Optimal load

In their recent work, Renno et al. [32] studied the optimality of energy harvesters in the fixed frequency scenario. They
found that, depending on the value of the mechanical damping ratio, there might exist more than one optimal electric load
that maximize the output power. Specifically, they have shown that their exists a bifurcation damping ratio below which
there are two optimal electric loads and beyond which there is only one optimal load. Here, we make use of Eq. (27) to
elucidate how the optimal values of the electric load vary with the sweep rate of the excitation. Basically, we differentiate
Eq. (27) with respect to the electric load, set the resulting equation equal to zero, and solve for the resulting optimal load
numerically. The sign of the second derivative of Eq. (27) with respect to the load resistance is always checked to guarantee
that the optimal load yields maximum power.

Based on the fixed-frequency analysis, we choose two values of the damping ratio, z; one below and one above the
bifurcation value. Fig. 16(a) depicts variation of the optimal load with the sweep rate for z larger than the bifurcation
damping ratio. It is shown that at low sweep rates, the optimal load is close to that obtained using the fixed-frequency
analysis. However, as the sweep rate increases, the optimal load starts to vary around the fixed-frequency optimal value.
On the other hand, when z is less than the bifurcation damping ratio, namely, z¼ 0:01, the optimal load varies significantly
between the two optimal values obtained for the fixed-frequency scenario.

These results can also be observed by inspecting variation of the power with the load for different values of the sweep
rate as depicted in Figs. 17(a) and (b). When z¼ 0:07, maxima in the average power do not vary significantly with variation
in the sweep rate. On the other hand, when z¼ 0:01 it is easily observable that the maxima alternate between being large
and closer to the larger optimal value of the fixed frequency case and being small and closer to the lower optimal value.
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6. Tuning and design considerations

The results obtained in this manuscript can provide helpful information for tuning and designing harvesters subjected
to sinusoidally varying frequency sources similar to the one considered herein. Specifically, given a host structure with an
excitation described by the parameters Oo, O, and b, this study reveals some ideas for efficient tuning of the harvester.

One of the critical design consideration of the harvester is its resonance frequency, Or . Obviously, for a fixed-frequency
excitation, the harvester should be designed such that Or matches the excitation frequency. In this case, however, the
excitation does not posses a fixed well-defined frequency but one that spans a certain range. The results discussed in the
previous section, expressed in Eq. (33), and shown in Fig. 9(a) suggest that, when the sweep rate of the excitation is very
high, the harvester will extract the same amount of power that it can extract from a fixed-frequency excitation when tuned
at resonance.

For lower and more realistic sweep rates, it is observed that the average power can be lower when the harvester’s
resonance frequency is tuned at Oo. This depends on the rate of change of the excitation frequency sweep. In the case of the
sinusoidally varying frequency considered in this work, the rate of change is minimum near the end of the frequency range
(turning points). If the turning point is chosen such that it coincides with the resonance frequency of the harvester, the
average power can be increased significantly. Also, it is concluded that the sweep rate has a significant effect on the
average output power. Therefore, the following few points should be emphasized in the design of the harvester:
�
 At low sweep rates, one can benefit from tuning the harvester at a position other than the center frequency. However, it
is observed that when detuning the harvester from the center frequency, resonance may no longer be a part of the
sampling process which could significantly lower the output power. Therefore, care must be taken so that this does not
occur.

�
 At low sweep rates, the off-center harvester showed maxima in the average power whenever resonance was part of the

sampling process, that is, Or ¼Okcr
for some kcr. As such, the first criterion for the choice of the harvester’s resonance

frequency is to satisfy the condition Or ¼OoþkcrO for any integer kcr.

�
 Since the fixed-frequency response curve is sampled with weights given by the square of the Bessel functions of the first

kind, it is also desirable to maximize these weights for those sampling frequencies within the harvester bandwidth and
closer to resonance. This is the condition that guides us in choosing kcr.

As the excitation is symmetric about Oo, one viable alternative that might improve performance even further, is to use
two similar harvesters tuned at either side of Oo. First, we decide on a position for Or in accordance with the previously
defined conditions, and then we place a second harvester with its natural frequency equidistant from Oo but at the other
side of it. These are just suggestions based on the previous discussion and the performance of the harvester in each case has
to be evaluated.

7. Conclusions

This effort marks a first attempt to theoretically analyze the response of energy harvesters to excitations having a time-
varying frequency. Results provided a new perspective that cannot be attained using a traditional steady-state fixed-
frequency analysis, thereby moving our understanding a step closer towards elucidating the transduction of energy
harvesters in realistic environments. It is shown that the average output power of the harvester has a significant
dependence on the sweep rate, center frequency, and range of the excitation. Specifically, we have shown that, for ranges
that are less than the bandwidth of the fixed-frequency power curves, changing the range of the excitation has a
considerable effect on the instantaneous output power. Furthermore, it is observed that the dependance of the average
power on the sweep rate can be divided into three major categories. For low sweep rates, the average power remains
constant. For moderate sweep rates, the average power shows significant dependance on the sweep rate with the average
power curve exhibiting a series of maxima and minima. For such excitations, we have illustrated that one can benefit from
tuning the excitation’s center frequency outside the bandwidth of the steady-state fixed-frequency harvester and away
from it resonance frequency. For high sweep rates, the average power approaches an asymptotic limit equal to the average
power at the carrier frequency. Therefore, to maximize the average power in such cases, the harvester’s resonance
frequency should be tuned to the excitation’s center frequency. Such results clearly demonstrate that one cannot solely
depend on the steady-state characteristics of the fixed-frequency harvester for the design of efficient energy harvesters.
More light should be shed on the response of energy harvesters to different types of environmental excitations.

Appendix A. Bessel function of the first kind

This appendix briefly discusses the Bessel functions of the first kind and integer order and summarizes their properties
that are in some way pertinent to the present work. For further information about Bessel functions, we refer the reader
to [31].
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Bessel functions of the first kind and positive integer order n are defined as

JnðxÞ ¼
X1
n ¼ 0

ð�1Þn

n!ðnþnÞ!
x

2

� 	2nþn
; (A.1)

J�nðxÞ ¼ ð�1ÞnJnðxÞ: (A.2)

An important consequence of Eq. (A.2) is that

J2
n ðxÞ ¼ J2

�nðxÞ; (A.3)

which means that the weights of the sampling procedure are symmetric around the center frequency Oo.
Following are some of the important properties of the Bessel functions of the first kind. Fig. 18 depicts the first four of

these functions which aid in understanding these properties.
1.
 Jnð0Þ ¼
1 if n¼ 0;

0 if na0:

(
(A.4)

For low values of x, J0ðxÞb Jna0ðxÞ. This leads to the conclusion that as x-0, J2
na0ðxÞ � 0. This result was utilized to obtain
2.
an approximation for the average power at high values of the sweep rate.

3.
 The magnitude of JnðxÞ decreases with both of the argument, x, and the order n. A characteristic that is critical toward

understanding the behavior of the average power shown in Fig. 9.
4.

J0
0 ðxÞ ¼�J1ðxÞ: (A.5)
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T. Seuaciuc-Osório, M.F. Daqaq / Journal of Sound and Vibration 329 (2010) 2497–2515 2515
[10] S.W. Arms, C.P. Townsend, D.L. Churchill, G.H. Galbreath, S.W. Mundell, Power management for energy harvesting wireless sensors, Proceedings of the
Smart Structures and Materials Conference, SPIE, San Diego, CA, 2005, pp. 5763, 267–275.

[11] J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Computing 4 (2005) 18–27.
[12] N. duToit, B. Wardle, Experimental verification of models for microfabricated piezoelectric energy harvesters, AIAA Journal 45 (2007) 1126–1137.
[13] A. Erturk, D. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, Journal of Vibration and

Acoustics, Transaction of ASME 130 (2008) 1–14.
[14] S. Roundy, Y. Zhang, Toward self-tuning adaptive vibration-based micro-generators, Smart Materials, Nano- and Micro-Smart Systems, Sydney,

Australia, 2005.
[15] N.G. Stephen, On energy harvesting from ambient vibration, Journal of Sound and Vibration 293 (2006) 409–425.
[16] J. Renno, M.F. Daqaq, J. Farmer, D.J. Inman, Parameter optimization of a vibration-based energy harvester, Proceedings of the ASME International

Design and Engineering Technical Conference, IDETC2007, Las Vegas, NV, 2007.
[17] T. Osorio, M.F. Daqaq, Effect of bias conditions on the optimal energy harvesting using magnetostrictive materials, Proceedings of the SPIE, San Diego,

CA, 2008, p. 69280B.
[18] D. Lee, Wireless and powerless sensing node system developed for monitoring motors, Sensors 8 (2008) 5005–5022.
[19] A. Erturk, D.J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart

Materials and Structures 18 (2009) 025009.
[20] T.H. Ng, W.H. Liao, Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor, Journal of Intelligent Materials and Structures 16

(1995) 785–797.
[21] T. Osorio, M.F. Daqaq, On the reduced-order modeling of energy harvesters, Journal of Intelligent Materials and Structures 20 (2009).
[22] F.M. Lewis, Vibration during acceleration through a critical speed, Transactions of the American Society of Mechanical Engineers 54 (1932) 253–261.
[23] D.L. Cronin, Response of Linear Viscous-damped Systems to Excitations having Time-varying Frequency, Ph.D. Thesis, California Institute of

Technology, Pasadena, CA, 1966.
[24] G. Hok, Response of linear resonant systems to excitation of a frequency varying with time, Journal of Applied Physics 19 (1948) 354–361.
[25] A.V. Parker, The Response of a Vibrating System to Several Time-dependent Frequency Excitations, Master’s Thesis, Iowa State University, Ames, IA,

1962.
[26] G.D. McCann, R.R. Benett, Vibration of multifrequency systems during acceleration through critical speeds, Journal of Applied Mechanics 16 (1949)

375–382.
[27] R. Markert, M. Seidler, Analytically based estimation of the maximum amplitude during passage through resonance, International Journal of Solids

and Structures 38 (2001) 1975–1992.
[28] S. Zhou, J. Shi, The analytical imbalance response of Jeffcott rotor during acceleration, Journal of Manufacturing Science and Engineering 123 (2001)

299–302.
[29] R. Henson, Response of an oscillating system to harmonic forces of time-varying frequency, AIAA Journal 46 (8) (2008).
[30] C.D. Cantrell, Modern Mathematical Methods for Physicists and Engineers, Cambridge University Press, New York, 2000.
[31] A. Broman, Introduction to Partial Differential Equations: From Fourier Series to Boundary-value Problems, Addison-Wesley, Great Britain, 1970.
[32] J.M. Renno, M.F. Daqaq, D.J. Inman, On the optimal energy harvesting from a vibration source, Journal of Sound and Vibration 320 (2009) 386–405.


	Energy harvesting under excitations of time-varying frequency
	Introduction
	Mathematical model
	Dimensional analysis

	Steady-state response
	Analytical expression for the average power
	Convergence analysis

	Frequency parameters analysis
	Effect of frequency range on the output power
	Effect of sweep rate on the average power
	Average power for low sweep rates
	Average power for moderate sweep rates
	Average power for high sweep rates


	Optimal load
	Tuning and design considerations
	Conclusions
	Bessel function of the first kind
	References




